Enter Number: |
Round Number to: |
Answer: 67.46 |
Number | Precision (decimal places) | Final value |
0.111111 | integer (0) | = 0 |
0.111111 | to tenths (1) | = 0.1 |
0.111111 | to hundredths (2) | = 0.11 |
0.111111 | to thousandths (3) | = 0.111 |
0.123456 | integer (0) | = 0 |
0.123456 | to tenths (1) | = 0.1 |
0.123456 | to hundredths (2) | = 0.12 |
0.123456 | to thousandths (3) | = 0.123 |
0.555555 | integer (0) | = 1 |
0.555555 | to tenths (1) | = 0.6 |
0.555555 | to hundredths (2) | = 0.56 |
0.555555 | to thousandths (3) | = 0.556 |
0.999999 | integer (0) | = 1 |
0.999999 | to tenths (1) | = 1 |
0.999999 | to hundredths (2) | = 1 |
0.999999 | to thousandths (3) | = 1 |
111.1111 | integer (0) | = 111 |
111.1111 | to tenths (1) | = 111.1 |
111.1111 | to hundredths (2) | = 111.11 |
111.1111 | to thousandths (3) | = 111.111 |
123.4567 | integer (0) | = 123 |
123.4567 | to tenths (1) | = 123.5 |
123.4567 | to hundredths (2) | = 123.46 |
123.4567 | to thousandths (3) | = 123.457 |
444.4444 | integer (0) | = 444 |
444.4444 | to tenths (1) | = 444.4 |
444.4444 | to hundredths (2) | = 444.44 |
444.4444 | to thousandths (3) | = 444.444 |
555.5555 | integer (0) | = 556 |
555.5555 | to tenths (1) | = 555.6 |
555.5555 | to hundredths (2) | = 555.56 |
555.5555 | to thousandths (3) | = 555.556 |
999.9999 | integer (0) | = 1000 |
999.9999 | to tenths (1) | = 1000 |
999.9999 | to hundredths (2) | = 1000 |
999.9999 | to thousandths (3) | = 1000 |
-0.111111 | integer (0) | = 0 |
-0.111111 | to tenths (1) | = -0.1 |
-0.111111 | to hundredths (2) | = -0.11 |
-0.111111 | to thousandths (3) | = -0.111 |
-0.123456 | integer (0) | = 0 |
-0.123456 | to tenths (1) | = -0.1 |
-0.123456 | to hundredths (2) | = -0.12 |
-0.123456 | to thousandths (3) | = -0.123 |
-0.555555 | integer (0) | = -1 |
-0.555555 | to tenths (1) | = -0.6 |
-0.555555 | to hundredths (2) | = -0.56 |
-0.555555 | to thousandths (3) | = -0.556 |
-0.999999 | integer (0) | = -1 |
-0.999999 | to tenths (1) | = -1 |
-0.999999 | to hundredths (2) | = -1 |
-0.999999 | to thousandths (3) | = -1 |
-111.1111 | integer (0) | = -111 |
-111.1111 | to tenths (1) | = -111.1 |
-111.1111 | to hundredths (2) | = -111.11 |
-111.1111 | to thousandths (3) | = -111.111 |
-123.4567 | integer (0) | = -123 |
-123.4567 | to tenths (1) | = -123.5 |
-123.4567 | to hundredths (2) | = -123.46 |
-123.4567 | to thousandths (3) | = -123.457 |
-444.4444 | integer (0) | = -444 |
-444.4444 | to tenths (1) | = -444.4 |
-444.4444 | to hundredths (2) | = -444.44 |
-444.4444 | to thousandths (3) | = -444.444 |
-555.5555 | integer (0) | = -556 |
-555.5555 | to tenths (1) | = -555.6 |
-555.5555 | to hundredths (2) | = -555.56 |
-555.5555 | to thousandths (3) | = -555.556 |
-999.9999 | integer (0) | = -1000 |
-999.9999 | to tenths (1) | = -1000 |
-999.9999 | to hundredths (2) | = -1000 |
-999.9999 | to thousandths (3) | = -1000 |
Number | Precision (decimal places) | Final value |
0.111111 | integer (0) | = 0 |
0.111111 | to ten (-1) | = 0 |
0.111111 | to hundred (-2) | = 0 |
0.111111 | to thousand (-3) | = 0 |
0.123456 | integer (0) | = 0 |
0.123456 | to ten (-1) | = 0 |
0.123456 | to hundred (-2) | = 0 |
0.123456 | to thousand (-3) | = 0 |
0.555555 | integer (0) | = 1 |
0.555555 | to ten (-1) | = 0 |
0.555555 | to hundred (-2) | = 0 |
0.555555 | to thousand (-3) | = 0 |
0.999999 | integer (0) | = 1 |
0.999999 | to ten (-1) | = 0 |
0.999999 | to hundred (-2) | = 0 |
0.999999 | to thousand (-3) | = 0 |
111.1111 | integer (0) | = 111 |
111.1111 | to ten (-1) | = 110 |
111.1111 | to hundred (-2) | = 100 |
111.1111 | to thousand (-3) | = 0 |
123.4567 | integer (0) | = 123 |
123.4567 | to ten (-1) | = 120 |
123.4567 | to hundred (-2) | = 100 |
123.4567 | to thousand (-3) | = 0 |
444.4444 | integer (0) | = 444 |
444.4444 | to ten (-1) | = 440 |
444.4444 | to hundred (-2) | = 400 |
444.4444 | to thousand (-3) | = 0 |
555.5555 | integer (0) | = 556 |
555.5555 | to ten (-1) | = 560 |
555.5555 | to hundred (-2) | = 600 |
555.5555 | to thousand (-3) | = 1000 |
999.9999 | integer (0) | = 1000 |
999.9999 | to ten (-1) | = 1000 |
999.9999 | to hundred (-2) | = 1000 |
999.9999 | to thousand (-3) | = 1000 |
-0.111111 | integer (0) | = 0 |
-0.111111 | to ten (-1) | = 0 |
-0.111111 | to hundred (-2) | = 0 |
-0.111111 | to thousand (-3) | = 0 |
-0.123456 | integer (0) | = 0 |
-0.123456 | to ten (-1) | = 0 |
-0.123456 | to hundred (-2) | = 0 |
-0.123456 | to thousand (-3) | = 0 |
-0.555555 | integer (0) | = -1 |
-0.555555 | to ten (-1) | = 0 |
-0.555555 | to hundred (-2) | = 0 |
-0.555555 | to thousand (-3) | = 0 |
-0.999999 | integer (0) | = -1 |
-0.999999 | to ten (-1) | = 0 |
-0.999999 | to hundred (-2) | = 0 |
-0.999999 | to thousand (-3) | = 0 |
-111.1111 | integer (0) | = -111 |
-111.1111 | to ten (-1) | = -110 |
-111.1111 | to hundred (-2) | = -100 |
-111.1111 | to thousand (-3) | = 0 |
-123.4567 | integer (0) | = -123 |
-123.4567 | to ten (-1) | = -120 |
-123.4567 | to hundred (-2) | = -100 |
-123.4567 | to thousand (-3) | = 0 |
-444.4444 | integer (0) | = -444 |
-444.4444 | to ten (-1) | = -440 |
-444.4444 | to hundred (-2) | = -400 |
-444.4444 | to thousand (-3) | = 0 |
-555.5555 | integer (0) | = -556 |
-555.5555 | to ten (-1) | = -560 |
-555.5555 | to hundred (-2) | = -600 |
-555.5555 | to thousand (-3) | = -1000 |
-999.9999 | integer (0) | = -1000 |
-999.9999 | to ten (-1) | = -1000 |
-999.9999 | to hundred (-2) | = -1000 |
-999.9999 | to thousand (-3) | = -1000 |
Our Sig Fig Calculator is designed to help you accurately determine the number of significant figures in any given number. This tool is invaluable for students, scientists, and engineers who require precision in calculations, ensuring clarity and correctness in measurements and data analysis.
Significant figures (sig figs) represent the digits in a number that contribute to its accuracy. These include all non-zero numbers, zeros between significant digits, and trailing zeros in a decimal number.
Counting Sig Figs: No fixed formula but a set of rules. For example, in the number \(123.45\), all digits are significant, making it 5 sig figs.
Rounding to Sig Figs: The number is rounded up or down based on the digit following the last significant figure. For example, rounding \(123.45\) to 3 sig figs gives \(123\).
Sig figs are crucial in scientific experiments, engineering designs, financial calculations, and any domain where precision is key. They help in maintaining the integrity of measurements and ensuring consistent results across computations.