# Binary Calculator

Enter the value that you want to calculate binary or base calculator.

 First number: Binary Decimal Hex Operation: add (+) sub (-) mult (×) div (÷) and (&) or (|) not (~) xor (^) left shift (<<) right shift (>>) zerofill right shift (>>) Second number: Binary Decimal Hex
 Binary number result: Decimal number result: Hex number result:

## Math Calculators

### Binary Calculator - Understanding the Base-2 System

Introduction to Binary Calculator: Our Binary Calculator is a versatile online tool that facilitates various operations using binary, decimal, and hexadecimal numbers. In essence, a binary number system, or base-2 system, uses only two digits: 0 and 1. This system underpins modern computing and digital systems.

How the Binary Calculator Works: To use the binary calculator:

1. Open the Binary Calculator tool.
2. Input two numbers for the operation.
3. Choose the operation (addition, subtraction, multiplication, division, etc.).
4. The tool supports calculations in binary, decimal, and hexadecimal formats.
5. Click "Calculate" to see the result.
6. Use "Reset" to clear and start a new calculation.

#### Basic Operations in Binary:

Addition: Follows specific rules where 0+0=0, 0+1=1, 1+0=1, and 1+1=10 (with a carry of 1).

Subtraction: Similar rules apply, where a 'borrow' may be necessary.

Multiplication: Easier than decimal, as it involves 0s and 1s only.

Binary to ASCII Conversion: This feature allows converting binary codes to ASCII text, essential in data encoding and computer programming.

Formula: The calculation in binary follows the base-2 numeral system. For instance, in binary addition, 1+1 results in 10 (binary), which is equivalent to 2 in decimal.

Historical Context: The binary system dates back to ancient times but was formally outlined by Gottfried Wilhelm Leibniz in the 17th century. It gained prominence in the 20th century with the advent of digital computing.

Real-World Applications:

Computing: Binary is the fundamental language of computers.

Telecommunications: Used in encoding and data transmission.

Data Processing: Essential for algorithms and programming.

Case A + B Sum Carry
1 0 + 0 0 0
2 0 + 1 1 0
3 1 + 0 1 0
4 1 + 1 0 1

### Binary Subtraction:

Case A- B Sum Carry
1 0-0 0 0
2 1 - 0 1 0
3 1 - 1 0 0
4 0 - 1 0 1

### Binary Multiplication:

Case A x B Multiplication
1 0 x 0 0
2 0 x 1 0
3 1 x 0 0
4 1 x 1 1

### Binary to ASCII text conversion table

null 0 0 0 0
start of header 1 1 1 1
start of text 2 2 2 10
end of text 3 3 3 11
end of transmission 4 4 4 100
enquire 5 5 5 101
acknowledge 6 6 6 110
bell 7 7 7 111
backspace 8 8 10 1000
horizontal tab 9 9 11 1001
linefeed 10 A 12 1010
vertical tab 11 B 13 1011
form feed 12 C 14 1100
carriage return 13 D 15 1101
shift out 14 E 16 1110
shift in 15 F 17 1111
data link escape 16 10 20 10000
device control 1/Xon 17 11 21 10001
device control 2 18 12 22 10010
device control 3/Xoff 19 13 23 10011
device control 4 20 14 24 10100
negative acknowledge 21 15 25 10101
synchronous idle 22 16 26 10110
end of transmission block 23 17 27 10111
cancel 24 18 30 11000
end of medium 25 19 31 11001
end of file/ substitute 26 1A 32 11010
escape 27 1B 33 11011
file separator 28 1C 34 11100
group separator 29 1D 35 11101
record separator 30 1E 36 11110
unit separator 31 1F 37 11111
space 32 20 40 100000
! 33 21 41 100001
" 34 22 42 100010
# 35 23 43 100011
\$ 36 24 44 100100
% 37 25 45 100101
& 38 26 46 100110
' 39 27 47 100111
( 40 28 50 101000
) 41 29 51 101001
* 42 2A 52 101010
+ 43 2B 53 101011
, 44 2C 54 101100
- 45 2D 55 101101
. 46 2E 56 101110
/ 47 2F 57 101111
0 48 30 60 110000
1 49 31 61 110001
2 50 32 62 110010
3 51 33 63 110011
4 52 34 64 110100
5 53 35 65 110101
6 54 36 66 110110
7 55 37 67 110111
8 56 38 70 111000
9 57 39 71 111001
: 58 3A 72 111010
; 59 3B 73 111011
< 60 3C 74 111100
= 61 3D 75 111101
> 62 3E 76 111110
? 63 3F 77 111111
@ 64 40 100 1000000
A 65 41 101 1000001
B 66 42 102 1000010
C 67 43 103 1000011
D 68 44 104 1000100
E 69 45 105 1000101
F 70 46 106 1000110
G 71 47 107 1000111
H 72 48 110 1001000
I 73 49 111 1001001
J 74 4A 112 1001010
K 75 4B 113 1001011
L 76 4C 114 1001100
M 77 4D 115 1001101
N 78 4E 116 1001110
O 79 4F 117 1001111
P 80 50 120 1010000
Q 81 51 121 1010001
R 82 52 122 1010010
S 83 53 123 1010011
T 84 54 124 1010100
U 85 55 125 1010101
V 86 56 126 1010110
W 87 57 127 1010111
X 88 58 130 1011000
Y 89 59 131 1011001
Z 90 5A 132 1011010
[ 91 5B 133 1011011
\ 92 5C 134 1011100
] 93 5D 135 1011101
^ 94 5E 136 1011110
_ 95 5F 137 1011111
` 96 60 140 1100000
a 97 61 141 1100001
b 98 62 142 1100010
c 99 63 143 1100011
d 100 64 144 1100100
e 101 65 145 1100101
f 102 66 146 1100110
g 103 67 147 1100111
h 104 68 150 1101000
i 105 69 151 1101001
j 106 6A 152 1101010
k 107 6B 153 1101011
l 108 6C 154 1101100
m 109 6D 155 1101101
n 110 6E 156 1101110
o 111 6F 157 1101111
p 112 70 160 1110000
q 113 71 161 1110001
r 114 72 162 1110010
s 115 73 163 1110011
t 116 74 164 1110100
u 117 75 165 1110101
v 118 76 166 1110110
w 119 77 167 1110111
x 120 78 170 1111000
y 121 79 171 1111001
z 122 7A 172 1111010
{ 123 7B 173 1111011
| 124 7C 174 1111100
} 125 7D 175 1111101
~ 126 7E 176 1111110
DEL 127 7F 177 1111111
128 80 200 10000000
129 81 201 10000001
130 82 202 10000010
131 83 203 10000011
132 84 204 10000100
133 85 205 10000101
134 86 206 10000110
135 87 207 10000111
136 88 210 10001000
137 89 211 10001001
138 8A 212 10001010
139 8B 213 10001011
140 8C 214 10001100
141 8D 215 10001101
142 8E 216 10001110
143 8F 217 10001111
144 90 220 10010000
145 91 221 10010001
146 92 222 10010010
147 93 223 10010011
148 94 224 10010100
149 95 225 10010101
150 96 226 10010110
151 97 227 10010111
152 98 230 10011000
153 99 231 10011001
154 9A 232 10011010
155 9B 233 10011011
156 9C 234 10011100
157 9D 235 10011101
158 9E 236 10011110
159 9F 237 10011111
160 A0 240 10100000
161 A1 241 10100001
162 A2 242 10100010
163 A3 243 10100011
164 A4 244 10100100
165 A5 245 10100101
166 A6 246 10100110
167 A7 247 10100111
168 A8 250 10101000
169 A9 251 10101001
170 AA 252 10101010
171 AB 253 10101011
172 AC 254 10101100
174 AE 256 10101110
175 AF 257 10101111
176 B0 260 10110000
177 B1 261 10110001
178 B2 262 10110010
179 B3 263 10110011
180 B4 264 10110100
181 B5 265 10110101
182 B6 266 10110110
183 B7 267 10110111
184 B8 270 10111000
185 B9 271 10111001
186 BA 272 10111010
187 BB 273 10111011
188 BC 274 10111100
189 BD 275 10111101
190 BE 276 10111110
191 BF 277 10111111
192 C0 300 11000000
193 C1 301 11000001
194 C2 302 11000010
195 C3 303 11000011
196 C4 304 11000100
197 C5 305 11000101
198 C6 306 11000110
199 C7 307 11000111
200 C8 310 11001000
201 C9 311 11001001
202 CA 312 11001010
203 CB 313 11001011
204 CC 314 11001100
205 CD 315 11001101
206 CE 316 11001110
207 CF 317 11001111
208 D0 320 11010000
209 D1 321 11010001
210 D2 322 11010010
211 D3 323 11010011
212 D4 324 11010100
213 D5 325 11010101
214 D6 326 11010110
215 D7 327 11010111
216 D8 330 11011000
217 D9 331 11011001
218 DA 332 11011010
219 DB 333 11011011
220 DC 334 11011100
221 DD 335 11011101
222 DE 336 11011110
223 DF 337 11011111
224 E0 340 11100000
225 E1 341 11100001
226 E2 342 11100010
227 E3 343 11100011
228 E4 344 11100100
229 E5 345 11100101
230 E6 346 11100110
231 E7 347 11100111
232 E8 350 11101000
233 E9 351 11101001
234 EA 352 11101010
235 EB 353 11101011
236 EC 354 11101100
237 ED 355 11101101
238 EE 356 11101110
239 EF 357 11101111
240 F0 360 11110000
241 F1 361 11110001
242 F2 362 11110010
243 F3 363 11110011
244 F4 364 11110100
245 F5 365 11110101
246 F6 366 11110110
247 F7 367 11110111
248 F8 370 11111000
249 F9 371 11111001
250 FA 372 11111010
251 FB 373 11111011
252 FC 374 11111100
253 FD 375 11111101
254 FE 376 11111110
255 FF 377 11111111

What is a Binary Calculator?

Answer: A binary calculator is a tool used for performing arithmetic operations in the binary number system, which uses only two symbols, typically 0 and 1. It supports operations like addition, subtraction, multiplication, and division, along with bitwise operations.

Is 000 a Binary Number?

Answer: Yes, 000 is a valid binary number. In binary, leading zeros do not change the value, so 000 is equivalent to 0.

How to Use a Binary Calculator?

Answer: To use a binary calculator, input the binary numbers and choose the desired operation (addition, subtraction, etc.). The calculator then computes the result based on binary arithmetic rules.

Is 100 a Binary Number?

Answer: Yes, 100 is a binary number. In the binary system, it represents the decimal number 4.

How are Binary Numbers Calculated?

Answer: Binary numbers are calculated using binary arithmetic, where you add, subtract, multiply, or divide using base 2 rules, different from the base 10 system used in decimal arithmetic.

What is a Binary Bill?

Answer: 'Binary bill' might refer to a term outside the standard binary arithmetic context. It's not a standard term in mathematics or computing related to binary numbers.

Does Binary Start at 0 or 1?

Answer: The binary number system starts at 0. The two digits in the binary system are 0 and 1.

How Does Calculator Binary Work?

Answer: A binary calculator works by taking binary inputs and performing arithmetic operations based on the rules of binary arithmetic, such as carrying over in addition when the sum exceeds 1.

How to Use a Binary Calculator with Working:

Answer: Enter binary numbers into the calculator, select the operation, and execute. The calculator displays the working steps, especially useful for educational purposes.

How to Calculate Binary?

Answer: Binary calculations involve binary arithmetic rules, where you perform operations on binary numbers considering the base-2 numeral system.

What is the Binary of 1?

Answer: In binary, the number 1 is simply represented as 1.

What does 11111111 mean in binary code?

Answer: To calculate this, perform binary addition. Align the numbers to the right and add each column, carrying over as needed.

How to Do Binary with a Calculator?

Answer: Input binary numbers into the calculator and select the operation. The calculator then performs the computation in the binary system.

Meaning of 11111111 in Binary Code:

Answer: It translates to the number 255 in the decimal system.

What is binary for 0?

Answer: In binary, 0 is represented as 0.

How is 3 written in binary?

Answer: The number 3 in binary is written as 11.

Answer: Read binary numbers from right to left, with each digit representing an increasing power of 2. For example, 1011 in binary is read as 12^3 + 02^2 + 12^1 + 12^0.

What is DEC in Calculator?

Answer: 'DEC' in a calculator refers to the decimal mode, where numbers are interpreted and calculated in the base-10 decimal system.